Как извлекать энергию из вакуума через резонанс. Современные проблемы науки и образования Николо Тесла и его знаменитый прибор

Под термином «магнитный резонанс» понимается избирательное (резонансное) поглощение энергии переменного электромагнитного поля электронной или ядерной подсистемой вещества, подверженного действию постоянного магнитного поля. Механизм поглощения связан с квантовыми переходами в этих подсистемах между дискретными уровнями энергии, возникающими в присутствии магнитного поля.

Магнитные резонансы подразделяются обычно на пять видов: 1)циклотронный резонанс (ЦР); 2) электронный парамагнитный резонанс (ЭПР); 3) ядерный магнитный резонанс (ЯМР); 4) электронный ферромагнитный резонанс; 5) электронный антиферромагнитный резонанс.

Циклотронный резонанс . При ЦР наблюдается избирательное поглощение энергии электромагнитного поля в полупроводниках и металлах, находящихся в постоянном магнитном поле, обусловленное квантовыми переходами электронов между энергетическими уровнями Ландау. На такие эквидистантные уровни расщепляется квазинепрерывный энергетический спектр электронов проводимости во внешнем магнитном поле.

Суть физического механизма ЦР можно понять и в рамках классической теории. Свободный электрон движется в постоянном магнитном поле (направленном вдоль оси ) по спиральной траектории вокруг линий магнитной индукции с циклотронной частотой

где и - соответственно величина заряда и эффективная масса электрона. Включим теперь радиочастотное поле с частотой и с вектором перпендикулярным к (например, вдоль оси ). Если электрон имеет подходящую фазу своего движения по спирали, то, поскольку частота его вращения совпадает с частотой внешнего поля, он будет ускоряться, и спираль будет расширяться. Ускорение электрона означает увеличение его энергии, которое происходит за счет передачи ее от радиочастотного поля. Таким образом, резонансное поглощение возможно при выполнении следующих условий:

частота внешнего электромагнитного поля, энергия которого поглощается, должна совпадать с циклотронной частотой электронов ;

вектор напряженности электрического поля электромагнитной волны должен иметь компоненту, нормальную к направлению постоянного магнитного поля ;

среднее время свободного пробега электронов в кристалле должно превышать период циклотронных колебаний .

Метод ЦР используется для определения эффективной массы носителей в полупроводниках. По полуширине линии ЦР можно определить характерные времена рассеяния, и, тем самым, установить подвижность носителей. По площади линии можно установить концентрацию носителей заряда в образце.

Электронный парамагнитный резонанс . Явление ЭПР заключается в резонансном поглощении энергии электромагнитного поля в парамагнитных образцах, помещенных в постоянное магнитное поле , нормальное к магнитному вектору электромагнитного поля. Физическая сущность явления заключается в следующем.


Магнитный момент атома, имеющего неспаренные электроны, определяется выражением (5.35). В магнитном поле энергетические уровни атома благодаря взаимодействию магнитного момента с магнитным полем расщепляются на подуровни с энергией

где представляет собой магнитное квантовое число атома и принимает значение

Из (5.52) видно, что число подуровней равно , а расстояние между подуровнями составляет

Переходы атомов с низких на более высокие уровни могут происходить под действием внешнего электромагнитного поля. Согласно квантовомеханическим правилам отбора разрешенными переходами являются такие, при которых магнитное квантовое число изменяется на единицу, то есть . Следовательно, квант энергии такого поля должен равняться расстоянию между подуровнями

Соотношение (5.55) является условием ЭПР. Переменное магнитное поле резонансной частоты с одинаковой вероятностью будет вызывать переходы с нижних магнитных подуровней на верхние (поглощение) и наоборот (излучение). В состоянии термодинамического равновесия связь между заселенностями и двух соседних уровней определяется законом Больцмана

Из (5.56) видно, что состояния с более низкой энергией имеют большую населенность (). Поэтому число атомов, поглощающих кванты электромагнитного поля, в этих условиях будет преобладать над числом излучающих атомов; в итоге система будет поглощать энергию электромагнитного поля, что приводит к росту . Однако благодаря взаимодействию с решеткой поглощаемая энергия в виде тепла передается решетке, и обычно настолько быстро, что при используемых частотах отношение очень слабо отличается от своего равновесного значения (5.56).

Частоты ЭПР могут быть определены из (5.55). Подставляя значение и считая (чисто спиновый момент), получим для резонансной частоты

Из (5.57) видно, что в полях от до 1 Тл резонансные частоты лежат в интервале Гц, то есть в радиочастотной и СВЧ областях.

Условие резонанса (5.55) относится к изолированным атомам, обладающими магнитными моментами. Однако оно остается справедливым и для системы атомов, если взаимодействие между магнитными моментами пренебрежимо мало. Такой системой является кристалл парамагнетика, в котором магнитные атомы находятся на больших расстояниях один от другого.

Явление ЭПР было предсказано в 1923г. Я.Г.Дорфманом и экспериментально обнаружено в 1944 р. Е.К.Завойским. В настоящее время ЭПР используется как один из самых мощных методов изучения твердого тела. На основе интерпретации спектров ЭПР получают информацию о дефектах, примесях в твердых телах и электронной структуре, о механизмах химических реакций и т.д. На явлении ЭПР построены парамагнитные усилители и генераторы.

Ядерный магнитный резонанс . Тяжелые элементарные частицы - протоны и нейтроны (нуклоны), а, следовательно, построенные из них атомные ядра обладают собственными магнитными моментами, которые служат источником ядерного магнетизма. Роль элементарного магнитного момента по аналогии с электроном здесь играет ядерный магнетон Бора

Атомное ядро обладает магнитным моментом

где – -фактор ядра, – спиновое число ядра, которое принимает полуцелые и целые значения:

0, 1/2, 1, 3/2, 2, ... . (5.60)

Проекция ядерного магнитного момента на ось z произвольно выбранной системы координат определяется соотношением

Здесь магнитное квантовое число при известном принимает значений:

В отсутствие внешнего магнитного поля все состояния с различными имеют одинаковую энергию, следовательно, являются вырожденными. Атомное ядро с отличным от нуля магнитным моментом, помещенное во внешнее постоянное магнитное поле , испытывает пространственное квантование, и его -кратно вырожденный уровень расщепляется в зеемановский мультиплет, уровни которого обладают энергиями

Если после этого на ядро воздействовать переменным полем, квант энергии которого равен расстоянию между уровнями (5.63)

то возникает резонансное поглощение энергии атомными ядрами, которое называется ядерным парамагнитным резонансом или просто ядерным магнитным резонансом .

В силу того, что много меньше , резонансная частота ЯМР заметно меньше частоты ЭПР. Так ЯМР в полях порядка 1 Тл наблюдается в области радиочастот.

ЯМР как метод исследования ядер, атомов и молекул получил разнообразные применения в физике, химии, биологии, медицине, технике, в частности, для измерения напряженности магнитных полей.

Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и, как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот. Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии, основанной на фурье-преобразованиях полученного сигнала.

В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

Сущность ЯМР-интроскопии (или магнитно-резонансной томографии) заключается в реализации особого рода количественного анализа по амплитуде сигнала ядерного магнитного резонанса. В методах ЯМР-интроскопии магнитное поле создается заведомо неоднородным. Тогда есть основание ожидать, что частота ядерного магнитного резонанса в каждой точке образца имеет свое собственное значение, отличающееся от значений в других частях. Задав какой-либо код для градаций амплитуды ЯМР-сигналов (яркость или цвет на экране монитора), можно получить условное изображение (томограмму) срезов внутренней структуры объекта.

Ферро- и антиферромагнитный резонанс . Физическая сущность ферромагнитного резонанса заключается в том, что под действием внешнего магнитного поля , намагничивающего ферромагнетик до насыщения, полный магнитный момент образца начинает прецессировать вокруг этого поля с ларморовой частотой , зависящей от поля. Если на такой образец наложить высокочастотное электромагнитное поле, перпендикулярное , и изменять его частоту , то при наступает резонансное поглощение энергии поля. Поглощение при этом на несколько порядков выше, чем при парамагнитном резонансе, потому что магнитная восприимчивость, а, следовательно, и магнитный момент насыщения в них много выше, чем у парамагнетиков.

Особенности резонансных явлений в ферро- и антиферромагнетиках определяются в первую очередь тем, что в таких веществах имеют дело не с изолированными атомами или сравнительно слабо взаимодействующими ионами обычных парамагнитных тел, а со сложной системой сильно взаимодействующих электронов. Обменное (электростатическое) взаимодействие создает большую результирующую намагниченность, а с ней и большое внутреннее магнитное поле, что существенно изменяет условия резонанса (5.55).

От ЭПР ферромагнитный резонанс отличается тем, что поглощение энергии в этом случае на много порядков сильнее и условие резонанса (связь между резонансной частотой переменного поля и величиной постоянного магнитного поля) существенно зависит от формы образцов.

На явлении ферромагнитного резонанса основаны многие СВЧ-устройства: резонансные вентили и фильтры, парамагнитные усилители, ограничители мощности и линии задержки.

Антиферромагнитный резонанс (электронный магнитный резонанс в антиферромагнетиках ) – явление относительно большого избирательного отклика магнитной системы антиферромагнетика на воздействие электромагнитного поля с частотой (10-1000 ГГц), близкой к собственным частотам прецессии векторов намагниченности магнитных подрешеток системы. Это явление сопровождается сильным поглощением энергии электромагнитного поля.

С квантовой точки зрения антиферромагнитный резонанс можно рассматривать как резонансное превращение фотонов электромагнитного поля в магноны с волновым вектором .

Для наблюдения антиферромагнитного резонанса используются радиоспектрометры, аналогичные применяемым для изучения ЭПР, но позволяющие проводить измерения на высоких (до 1000 ГГц) частотах и в сильных (до 1 МГс) магнитных полях. Наиболее перспективны спектрометры, в которых сканируется не магнитное поле, а частота. Получили распространение оптические методы детектирования антиферромагнитного резонанса .

Принцип вашему вниманию устройство с КПД выше 100%, вы скажете что вот это фейк и все не по настоящему, но это неправда. Собрано устройство на отечественных деталях. В конструкции трансформатора есть одна особенность, трансформатор Ш-образный с зазором по середине, но в зазоре есть неодимовый магнит, который задает начальный импульс на катушку обратной связи. Катушки съема можно мотать в любую сторону, но при этом нужна ювелирная точность в их намотке, они должны иметь одинаковую индуктивность. Если это не соблюсти, то резонанса не будет, об этом вас проинформирует вольтметр, подключенный параллельно к батарейке. Особого применения в данной конструкции я не нашел, но можно подключить источник света в виде ламп накаливания.

Технических характеристики при резонансе:
КПД выше 100%
Обратный ток 163-167 миллиампер (сам не знаю как это так происходит, но батарея заряжается)
Ток потребления 141 миллиампер (получается что 20 миллиампер - это свободная энергия и идет на заряд батареи)

Красный провод катушка L1
Зеленый провод катушка L2
Черный провод это катушки съема

Настройка

На своем опыте убедился, что катушка Л1 намотанная одинаковым проводом, легче настраивается на резонанс с Л2, создавая больший ток чем потребляется. Как я понял создается ферромагнитный резонанс, что питает нагрузку и заряжает батарею большим током. Для настройки резонанса должны быть две одинаковые катушки или одна, при включенном устройстве они двигаются под нагрузкой лампы а виде накаливания (в моем случае лампа 12 Вольт 5 Ватт). Для настройки подключим вольтметр параллельно батарейке и начнем двигать катушки(у). При резонансе, напряжение на батарейке должно начать повышаться. Дойдя до определенного порога, батарейка перестанет заряжаться и разряжаться. На транзистор нужно установить большой радиатор. С случае с двумя катушками все сложнее, так как надо намотать их так, чтобы индуктивности практически не отличались, с разными нагрузками расположение правой и левой катушек будут меняться. Если не соблюсти эти правила настройки, то резонанса может и не произойти, при этом мы получим простой повышающий преобразователь с высоким КПД. Параметры катушек у меня такие 1:3, то есть Л1 8 витков, Л2 24 витка обе с одинаковым сечением провода. Л1 мотается поверх Л2. Съемные катушки без разницы каким проводом, но у меня 1.5мм.

Фото

Готовое устройство в безрезонансном состоянии (катушки подключены последовательно)

Проба самозапитки от съемной катушки через диод. (Результат: неудача, работает 14 секунд с затуханием)

Состояние резонанса на одной катушке без самозапитки через диод. Опыт удачен, с подключенной батарейкой преобразователь проработал 37 часов 40 минут, без потери напряжения на батарейке в начале опыта напряжение батарейки было 7.15 вольт, к концу 7.60 вольт. Данный опыт доказал, что преобразователь способен выдать КПД выше 100%. Для нагрузки использовал лампу накаливания 12 Вольт 5 Ватт. К попытке использовать другие устройства я отказался, так как магнитное поле вокруг устройства очень сильное и создает помехи в радиусе полтора метра, радио перестает работать в радиусе 10 метров.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ819А

1 КТ805 В блокнот
C1 Конденсатор 0.1 мкФ 1 В блокнот
C2 Электролитический конденсатор 50 мкФ 25 в 1 В блокнот
R1 Резистор

2.2 кОм

1 В блокнот
R2 Резистор

62 Ом

1 В блокнот
Bat1 Батарея 12 Вольт 1

Без длительной дискуссии, четырехгранном геометрическом составном резонансе или Правила Девяти, вполне возможно понять эту цепь как в основном настроенный магнитный и кварцевый усилитель.

Тем не менее, необходимо знать эти предметы для того, чтобы разрабатывать и строить MRA, так что если вы хотите полностью реализовать особенности этой цепи, воспользуйтесь файлами на KeelyNet, которое содержит все необходимое.

В MRA цепи показанной выше, есть регулируемый низко-силовой генератор, который подает сигнал на одну сторону бария- титаните преобразователь. Противоположная сторона преобразователя подключена к первичной катушке, которая намотана на сердечнике ферритового бариевого магнита. Противоположный конец первичной возвращается к генератору.

Вторичная обмотка подключена к обычному мостовому выпрямителю, а выход моста подведён к DC(постоянный ток) нагрузке. Конденсатор фильтра может быть использован на выходе моста и использован на установке MRA которую мы построили. К тому же, резистор нагрузки через конденсатор подержит выход DC(постоянный ток) от получения слишком высокого тока по мере того, как цепь настроена. Мы определили, что резистор в 30 омов и 10 ватт было достаточным.

Как только схема собрана, поместите вольтметр через выходной резистор, чтобы проверять повышения напряжение по мере настройки цепи. Отрегулируйте частоту генератора, чтобы обеспечивать самый верхний DC выход. В течение этого процесса, поймите, что напряжение через пьезоэлемент и катушку будет значительно выше чем входной уровень который вы подаете на вход. Мы видели общее напряжение почти 1000 вольт при входном токе в 30 вольт.

Когда цепь настроена, магнит будет "петь" около 8,000 в 11,000 Hz. Если пьезоэлемент поет, вы превышаете свои силовые возможности и нужно уменьшить количествовитков вашей первичный обмотки. Частота, которая резонирует как пьезоэлемент так и магнит в оптимальном резонансе будут в три раза (три октавы выше) частоты в которой магнит поет.

Это - девять обертонов, которые упомянуты в Правилах Девяти.

Для того, чтобы тестировать цепь, установите прецизионную, высокую мощность, уменьшите резистор включеный последовательно с выходом из генератора в пьезоэлемент, и измерьте напряжение падения. Это должно быть очень небольшой, менее чем 0.1 вольта переменного тока. Используйте эту величину, чтобы определять ток в последовательной цепи, затем вычислить мощность.

Затем, измерьте напряжение постоянного тока через ваш выходной резистор нагрузки и снова вычислите мощность. Вы должны получить между 3...4 раз выше прежде рассчитанной входной мощности.

Как только цепь подействует, Вы отметите, что напряжение изменится 0.1 вольтами постоянного тока или более, в зависимости от времени дня. Это является следствием природы сил присущей в Земной магнитной области. Ожидайте максимальное напряжение в или перед восходом солнца.

В нашей цепи, мы измерили 0.084 вольт переменного тока нагруженных последовательно 2 ома резистора, в общей сложности 0.685 W первичного рассеяния. С этим, мы достигли 2.75 W выходной мощности и использовали это, чтобы управлять лампой и двигателем. Повышение входного напряжения имело эффект уменьшающий первичный ток при повышенной выходной мощности, таким образом улучшающей прирост силового коэффициента. Мы верим, что большие силовые системы могут быть построены использованием больших катушек, больших пьезоэлементов, и на более низкие частоты - в пределах звукового частотного дипазона компонентов.

MRA - по существу средства освобождения электрической энергии хранящейся в магнитах. Как таковой, это - переменного тока батарея с постоянного тока выходом. Может быть использовано для портативного, само-заряжаемого блока питания с генератором твердого состояния и перезаряжаемой батареи. Для тех, который хочется краткий обзор технологии, следующим параграфам предлагают, но настойчиво напоминаем, чтобы вы продолжали это чтение с более тщательным исследованием файлов KeelyNet.

Материя=Энергия. Для того, чтобы изменить материал, измените энергию. Создание магнита достигнуто процессом, который заставляет материал расширяться так и сжиматься, в результате чего магнит - в постоянном состоянии краха. Это то- почему магниты привлекают материал с аналогичными структурами решетки, как они пытаются заполнять энергетическую пустоту, которая создавала их. "Области" магнита установлены после процесс намагничивания, и единственный путь извлекать электрическую энергию нужно физически вращать катушку относительно магнита.

Тем не менее, также возможно породить виртуальное вращение, прилагая звуковую частоту магнита, который вызывает решетки и области, чтобы вибрировать. Тем не менее, мощность требовавшаяся, чтобы это делать больше, чем энергия выпускалась виртуальным вращением. Следовательно необходимо увеличивать вибрацию не используя чрезмерный ток.

Пьезоэлемент имеет фактически неисчерпаемую поставку свободных электронов. Использование пьезоэлемент последовательно с первичной катушкой почти устраняет первичный ток, поскольку это - напряжение, которое выделяет пьезоэлемент, не ток. Следовательно с пьезоэлемента может быть выделено очень небольшую фактическую мощность и обеспечен ток в первичную катушку, которая вибрирует области магнита.

Пьезоэлемент - катализатор для циркулирующего тока в первичной катушке. Циркулирующий ток является добавкой, и это - причина высокого потенциала разработанного как через пьезоэлемент так и через первичную катушку.

В этой точке, резонанс становится важным. Вы должны иметь разделения в три октавы между звуковой частотой магнита и сигналом подаваемым в пьезоэлемент. Циркулирующий ток будет богатый обертонами, необходимых для действия цепи.

Хотя цепь проста, она использует понятия "Фи", виртуального вращения, четырехгранной геометрии, пьезоэлемента и трансформаторной теории, и электрического знания. Это не предлагается как проект для начинающего, из-за высокого настоящего напряжения. Для инженеров и техников, это может быть трудно принимать, что MRA - вышеуказанное объединение. Надо надеяться, это поможет строить лучший мир.


Дата публикации: Прочитано: 65540 раз Дополнительно на данную тему

Тот, кто хочет сделать свое жилье независимым, обращает внимание на устройство, которое называют «бестопливный генератор». Что же это такое, как работает, выгодно ли использовать? Страшно даже представить себе, что будет с жителями современного населенного пункта без электричества. Люди зависят от источников тока в городах и поселках любой страны мира. Холодильники и телевизоры, микроволновки и телефоны, отопление квартир, движение транспорта – все зависит от наличия энергии.

Зачем изобретать велосипед

Действительно, для чего создавать себе головную боль, подыскивая способы получения тока, когда его вполне хватает в розетках обычной сети? Ответ прост: учеными доказано, что запасы топлива на планете конечны: этих ресурсов с трудом хватит миру на 50-60- лет. Кроме того, строительство гигантских ГЭС, ТЭЦ и водохранилищ способствует глобальному изменению климата, а от отходов атомных станций невозможно избавиться. Огромное количество плодородной земли уничтожено, нечистоты и ядовитые жидкости портят воды рек и родников, промышленными выбросами засоряется атмосфера.

Земля – это наш дом, и люди просто обязаны, в своих же интересах, бережно использовать то, что даром получили при рождении. Существуют технологии выработки тепла и электричества, для которых не нужны ни гигантские сооружения, ни огромные топливные ресурсы. Их называют альтернативными или свободными источниками энергии.

Солнце, ветер и вода – наши лучшие друзья

Приборы и установки, работающие совсем без топлива известны с давних времен. Ветряные и водяные мельницы обеспечивали мукой окрестные деревни, используя только движение воздуха и речного потока. Используя возобновляемые источники энергии: ветер, солнечное тепло, движение волн и рек, силу магнитных полей, человечество получает независимость от централизованных систем подачи электричества. Бестопливный генератор – устройство, работающее на свободной энергии. Какие же преимущества сулит использование альтернативы?

  1. Полная автономность и мобильность.
  2. Несравнимая с нынешней дешевизна кВт-часов.
  3. Экологичное, безопасное и безвредное производство.
  4. Экономия, сохранение и восстановление природных ресурсов.
  5. Чистый атмосферный воздух.
  6. Повышение комфорта и уровня благосостояния населения планеты.
  7. Доступность и дешевизна получения в любой местности.
  8. Снижения себестоимости производства продуктов питания, одежды, бытовых приборов, мебели.
  9. Отсутствие шлаковых и радиоактивных отходов.

Перечисленные пункты являются только небольшой долей из списка преимуществ от использования населением планеты альтернативной энергетики.

Что такое БТГ

Генераторы – это приборы для выработки электрического тока. Они состоят из статора (неподвижной детали) и вращающегося ротора. Именно для работы этого устройства автомобильные и другие двигатели сжигают в своих камерах бензин или солярку, выделяя ядовитые пары и выхлопные газы, отравляя атмосферу.

Бестопливный генератор не потребляет, а добывает энергию из, так называемых, возобновляющихся и бесплатных природных источников: из ветра, из воды, из земли и воздуха.

Разработки в этом направлении велись исследователями еще в 19 веке. Создано несколько десятков отличающихся друг от друга технологий. Среди самых перспективных направлений специалисты называют следующие:

  • установки, использующие силы постоянных магнитных полей;
  • реактивные полевые двигатели;
  • использование солнечного тепла;
  • устройства, подобные трансформатору Тесла, генератору Капанадзе;
  • приборы, работающие на энергии резонансного разложения воды;
  • малые индивидуальные ветровые установки;
  • монополярные магнитные двигатели.

Есть много других разработок, основанных на использовании бестопливных технологий. Наш информационный мир дает огромные возможности для получения знаний. Немного старания – и человечеству перестанут грозить кризисы и истощение топливных запасов. Мировая реформа энергетики не за горами!

Николо Тесла и его знаменитый прибор

Бестопливный генератор , представленный миру в конце 19-го века, работал на энергии эфира, который Н.Тесла называл упругой структурированной материей, космическими лучами. Традиционной физикой отрицается наличие данного вещества. Несмотря на это, эксплуатируя свои установки, Тесла получал и передавал беспроводным способом электричество, выделенное при взаимодействии разноименных зарядов Земли и окружающего пространства. Посредством собственного резонансного трансформатора и турбины Ниагарской ГЭС, изобретатель обеспечил электроэнергией весь штат, применив беспроводной способ передачи тока.

Исследователь создал устройство, работа которого основана на взаимодействии двух потоков энергии. Он объединил положительно заряженное пространство и отрицательный потенциал земной поверхности, получив заряды мощностью в тысячи киловатт. Принцип действия и конструкция запатентованы изобретателем в 1901 году.

На основе схемы трансформатора Тесла уже в наше время грузинским изобретателем Тариэлем Капанадзе изготовлен и продемонстрирован беспроводной бестопливный генератор . Электростанции подобного типа с успехом работают в Турции, так как на родине изобретатель не получил поддержки действующей власти.

В приборе задействованы автомобильные аккумуляторы (для первого импульса), понижающие и повышающие трансформаторы, конденсаторы, заземляющий прут. Конечно, не стоит искать в интернете полного и подробного описания конструкции. Желающим повторить данные опыты приходится начинать все с начала и добиваться результатов опытным путем.

Совет: создавая прибор по этому принципу, нужно соблюдать технику безопасности, так как на выходе устройство выдает ток высокого напряжения.

Почему же такой выгодный, с точки зрения получения дешевого электрического тока, прибор не получил распространения после обнародования? Согласно рассекреченной прессой информации, правящая верхушка и финансирующая ее банковская элита США во главе с Морганом, увидели в исследованиях Теслы опасность для монополии на получение и продажу электроэнергии в стране. Полигон и лаборатория исследователя были уничтожены, понятие «эфир» изъято из физики, патенты засекречены и скрыты. Сохранилась лишь информация, напечатанная в газетах и научных журналах.

Двигатели на постоянных магнитах

Если взять кулер, отсоединенный от компьютера и приблизить магнит к его контактам, вентилятор начнет вращаться. Полученный электромеханический контур – это образец автономной энергетической системы с устойчивыми электрическими колебаниями. Бестопливный генератор на постоянных магнитах обладает одним из самых необходимых свойств: способностью к непрерывному функционированию. Согласно законам физики, магнитные потоки — это неисчерпаемые источники энергии, они не расходуются. Работоспособность подобного двигателя зависит только от мощности используемого магнита. Концентрируя силовые линии магнитных потоков, а также используя текстолитовый якорь, можно добиться наилучших показателей мощности прибора. Чтобы усилить поле, увеличивают количество силовых магнитных линий. Для этого уменьшают площадь магнитных полюсов и увеличивают их количество. Осталось замкнуть полюса и – готово, можно ехать. Дополнительным плюсом этого источника энергии является независимость от погодных условий, компактные размеры, экологическая безопасность.

О малых ветряных установках

Вертикальные, горизонтальные, парусные и лопастные, роторные – все это разновидности ветряков. Большим минусом, над преодолением которого работают энтузиасты, является сложность запуска при малой скорости воздушного потока. Рентабельно использовать бестопливный генератор , крутящийся от движения атмосферы, в местностях с частыми ветрами. При изготовлении подобной установки обязательно учитывают возможность и частоту ураганов. Чтобы лопасти не поломались, они должны складываться при сильном усилении скорости ветра. Ротор устанавливают на открытом участке местности на верхушке мачты, высотой более 3-х метров.

Совет: мощность установки зависит от произведения ометаемой площади рабочего колеса и среднего значения скорости ветра в кубе.

Некоторые конструкции вентиляторов закрепляют на крышах домов. Для малых, индивидуальных электростанций рентабельно установить комплекс из ветряка и солнечных батарей. Это позволит получать энергию в солнечную и дождливую погоду, независимо от штиля или наличия туч на небе. Остаточные мощности накапливаются в аккумуляторах и используются по мере необходимости.

В последние 15-20 лет энтузиасты данного вида получения энергии активно используют парусные ветряные колеса. Среди их плюсов называют такие как:

  • легкий вес и захват даже самого слабого движения воздуха;
  • беззвучное вращение;
  • безлопастная конструкция;
  • получение большой мощности даже при слабом ветре;
  • самозапуск;
  • самая дешевая из конструкций ветрогенераторов;
  • доступность материалов для самостоятельного изготовления;
  • безвибрационная работа.

Жаль, что такие агрегаты громоздки, а то бы нашлись умельцы, которые оборудовали бы ими свои автомобили! Установил на крыше – и пользуйся бесплатной энергией. Сам едет – сам и вырабатывает, мечта, а не машина. Ни тебе выхлопных газов, ни бесконечной зависимости от автозаправочных станций.

Опасны ли новые технологии

Кое-кто из особо осторожных ученых считает, бестопливный генератор небезопасным. Мол, излучение, высоковольтные разряды, размеры могут повлиять на здоровье человека. В противовес таким утверждениям достаточно напомнить, что Николо Тесла, работая с тысячеватными показателями напряжения, дожил до 86 лет.

Разве кто-то прекратил пользоваться сотовыми телефонами? А ведь уже доказано учеными, что есть вред и от такого маленького излучения. Неужели население планеты предпочтет ходить пешком, а не передвигаться на автомобилях, испугавшись печальной хроники бесконечных аварий на дорогах? Нет смысла отвечать на такие вопросы. Но во имя сохранения планеты Земля, природных ресурсов, да и собственных финансов, все большее количество граждан старается перевести свои жилища на использование источников альтернативной энергии.

В данной статье узнаем про резонанс — как источник энергии.

В средствах массовой информации с огромным «резонансом» говорят о РЕЗОНАНСЕ – как источнике энергии. Предлагаю разобраться с Вами, что такое электрический резонанс? Далеко ходить не будем, рассмотрим происходящие процессы в классическом LC резонансном контуре. Собственно других резонансных систем в электронике не существует. Прежде стоит отметить: бывают последовательный и параллельный колебательный (резонансный) контур. Процессы в обоих видах контуров протекают одинаково, отличие только в принципах питания.

Наиболее привлекателен, как источник энергии — параллельный колебательный контур, который все известные личности (в том числе Н. Тесла) использовали и используют в своих изобретениях и разработках. На его примере, проще рассматривать протекание тока питания и контурного тока.

Но колебательный контур обладает ещё одним параметром, оказывающим значительное влияние на потери энергии контуром — резистивным сопротивлением R , которое складывается из сопротивлений потерь в конденсаторе и катушке индуктивности, сопротивления выходного транзисторного каскада (в закрытом состоянии), и самое главное — сопротивления цепи нагрузки. Полная схема параллельного колебательного контура с резистивным сопротивлением изображена на рисунке, где C , L и R — суммарные значения ёмкостей, индуктивностей и резистивного сопротивления контура. Вообще, есть понятие – импеданс, но я не буду забивать вам голову этим понятием, а буду объяснять по простому.

Для того, чтобы понять, как C , L и R «работают» совместно, нам необходимо рассмотреть Амплитудно-частотную характеристику контура. Но сделаем мы это не на традиционном графике АЧХ, как упрощённо сделано в статье Колебательный контур. Резонанс . Изображённые ниже формулы и частотная характеристика, объясняют состояние и зависимость реактивных сопротивлений конденсатора X C и катушки индуктивности X L от частоты f .

На графике изображена линия зависимости реактивного сопротивления конденсатора X C от частоты f , которая указывает, что на низких частотах реактивное сопротивление конденсатора максимально, а с повышением частоты уменьшается по экспоненте — конденсатор превращается в «проводник». Линия зависимости реактивного сопротивления катушки индуктивности X L от частоты f , указывает, что катушка индуктивности ведёт себя наоборот, на низких частотах реактивное сопротивление катушки минимально — катушка индуктивности — «проводник», а с повышением частоты увеличивается, но не по экспоненте, а по прямой. Резистивное сопротивление контура R , никак от изменения частоты не зависит. Так как элементы контура соединены параллельно, то и складывать сопротивления конденсатора Х C , катушки индуктивности Х L и резистивное сопротивление контура R мы будем по формуле параллельного соединения резисторов, (подробнее в статье:Резистор).

По результирующему графику суммарного сопротивления резонансного контура мы видим, что имеется определённая частота, на которой значения сопротивления конденсатора Х C и катушки индуктивности Х L одинаковы, это и есть резонансная частота. Этот график фактически (но не совсем) является амплитудно-частотной характеристикой (АЧХ) контура.

Таким образом, можно сделать вывод, что элементы колебательного контура являются нагрузкой для электрического тока, могут поглощать подводимую энергию. Для подъёма АЧХ контура, необходимо увеличить общее сопротивление контура. Это можно сделать путём увеличения его составляющих — сопротивления конденсатора Х C , катушки индуктивности Х L и резистивного сопротивления контура R . Для повышения характеристики АЧХ и для того, чтобы частота не «уходила», необходимо одновременно увеличивая индуктивность катушки, уменьшать ёмкость конденсатора. Это следует из правила, согласно которому, на резонансной частоте величины Х C = Х L . Приведём формулу Томсона, получаемую из выражений зависимости Х C и Х L от частоты и подтверждающую это утверждение:

Из формулы Томсона следует, что на одной и той же частоте может работать множество контуров с разными величинами L и С , но с одинаковым произведением . Если же мы уменьшим сопротивление R , то и общее сопротивление колебательной системы так же снизится, что приведёт к потерям энергии.
Когда мы говорим о возможности получения энергии из колебательного контура, мы говорим об уменьшении сопротивления R , а это по известному закону Ома «не знаешь Ома, сиди дома», или I=U/R приводит к снижению амплитуды резонансных колебаний.

Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период, принято называть добротностью Q . Она то и зависит от вышеописанных физических величин:

Где, же дополнительная энергия резонансного контура? Всё вышеописанное ранее в этой статье, проводилось без учёта главного явления любого электрического резонансного контура – контурного тока.

Контурный ток

В связи с тем, что конденсатор и катушка индуктивности обладают реактивными свойствами, в колебательном контуре протекает контурный ток. Путь протекания этого тока проходит через конденсатор и катушку индуктивности. Направление этого тока меняется два раза за период колебаний. Этот процесс, наглядно изображён на примере простейшего транзисторного каскада на иллюстрации ниже:

Для упрощения, считаем, что транзистор работает без дополнительного смещения базы. Все переходные процессы протекания тока питания и контурного тока происходят в течение одного периода колебания, а в последующих периодах повторяются.

Участок «0» временной характеристики, можно назвать первоначальным, когда процессы заряда и перезаряда ёмкости и индуктивности ещё не «устоялись», так как в начальный момент они разряжены. На этом этапе происходит заряд ёмкости от источника питания через открытый транзистор, при этом ток заряда сначала максимальный, а по окончании 1/4 периода падает до нуля. Ток в катушке индуктивности, обладающей инерционностью минимален. По окончании отрезка «0», контур переходит в резонансный «устоявшийся» режим.

На участке «В» временной характеристики, когда конденсатор заряжен до напряжения источника питания, ток протекающий по пути «источник питания – катушка — открытый транзистор — источник питания» постепенно увеличивается. Когда в результате закрытия транзистора, напряжение на конденсаторе превысит потенциал, прикладываемый от источника тока, конденсатор начинает разряжаться через катушку индуктивности, к концу 1/2 периода разрядившись на неё полностью. Таким образом, в этот промежуток времени «В» через катушку индуктивности течёт два тока – ток источника питания и контурный ток разряда ёмкости.

На участке «С» временной характеристики, когда переход транзистора закрыт, по причине инерционности катушки индуктивности происходит перезаряд конденсатора от катушки индуктивности. Катушка индуктивности полностью разряжается, а конденсатор оказывается заряженным противоположным потенциалом. Ток источника питания в этот момент «С» через элементы контура не течёт.

На участке «D» временной характеристики, когда переход транзистора закрыт, происходит обратный разряд конденсатора на катушку индуктивности. Конденсатор полностью разряжается, а индуктивность наоборот, оказывается заряженной потенциалом противоположным источнику питания. Ток источника питания в этот момент «D» через элементы контура, по-прежнему, не течёт.

На участке «А» временной характеристики, происходит заряд конденсатора от катушки индуктивности, а при разряде катушки до значения меньше напряжения источника питания подаваемого через открытый транзистор, конденсатор заряжается от источника питания. При этом ток заряда конденсатора сначала максимальный, а по окончании периода сигнала падает до нуля. Ток в катушке индуктивности, сначала — максимальный, а в конце временного интервала «А» становится равным нулю. В промежуток времени «А» через конденсатор течёт два тока – ток источника питания и контурный ток разряда ёмкости.

Процесс работы резонансного контура циклически повторяется по схеме: А – В – С – D – А.

Таким образом, в резонансном контуре ровно половину периода гармонического сигнала на участках А и В происходит сложение двух токов – тока источника питания и контурного тока, что в свою очередь с каждым периодом (процесса перезаряда) повышает энергию контура. Повышение энергии резонансного контура происходит только за счёт источника питания. Сколько в резонансный контур попадает энергии, столько энергии и тратится на нагрузку и потери в элементах схемы.

Почему то бытует мнение, что из электрического резонанса возможно получение «дополнительной», или «свободной» энергии, что для этого в контуре достаточно поддерживать резонанс. Выше описанные процессы, происходящие в электрическом резонансном контуре, полностью это опровергают, доказывая черезпериодное накопление энергии.

В интернете была статья, про то, что на каком-то заводе, какой-то электрик начитался статей про резонанс, и доработав понижающие трансформаторы на заводе снизил потребление энергии заводом на целый порядок.

Для учёта расхода энергии бывают счётчики активной энергии, которые стоят у нас в домах, и счётчики реактивной энергии, которые устанавливают на заводах. В чём разница? На предприятиях, как правило, имеется большое количество оборудования и станков, работающих на трёхфазных двигателях. Двигатель – это индуктивность, а наличие мощного двигателя подразумевает огромные токи. Для равномерности нагрузки мощных двигателей на трёхфазную сеть в каждый временной момент трёхфазного напряжения, в цепи питания устанавливают конденсаторы, которые совместно с обмотками двигателя образуют колебательные контура. Действие этих конденсаторов такое же, как было описано на участках А и В – во время действия сразу двух токов – тока источника питания и контурного тока. Счётчики активной энергии построены так, что заранее накопленная у потребителя энергия вносит ошибку в измерение. Как правило, это связано с «неправильным» подмагничиванием «токовой катушки». Счётчики активной энергии показывают энергию, расходованную двигателями, использующими «блоки конденсаторов», где то на одну треть меньше реально расходованной энергии. А вот счётчики реактивной энергии отлично с этим справляются. Этот «горе-электрик» не мог сделать никакой резонанс, хотя бы потому, что нагрузка потребителей на заводе в разгар дня – стабильна, а утром, в обед и вечером — величина не постоянная и скачет в широких пределах. Как было описано в этой статье, сопротивление нагрузки сильно влияет на выходную амплитуду резонансного контура. Стоило, кому ни будь на заводе, перед обеденным перерывом выключить мощный станок, то напряжение подскочило — бы и сожгло пару других станков, которые ещё не успели выключить другие рабочие. Я предполагаю, что он «химичил» со счётчиками, за что и был уволен.

В заключении статьи, хочу добавить для тех посетителей сайта, кто плохо учился в школе и поэтому в силу своего невежества искренне верит волшебникам:

Закон сохранения энергии никто не отменял! Вечного двигателя основанного на резонансе не бывает, и не может быть! При работе колебательного контура, происходит черезпериодное накопление энергии источника тока, поэтому в результате накопления, в определённый момент времени энергия контура может превышать подводимую к нему энергию. Энергия из «пустоты» не может появиться. «Свободная энергия» — это миф, порождённый малограмотными людьми, для людей себе подобных. Энергия присутствует во всём, что нас окружает, её только нужно правильно извлечь. Это различные химические соединения и элементы, природные явления, но не «Чудо», подобное тому, которое приписывают Тесле! И чем глупее сам «приписчик», тем «чуднее» в его голове выглядит этот выдающийся учёный. В помощь к получению энергии можно привлечь и электрический резонанс, но как вспомогательное явление, помогающее влиять на изменения свойств материалов. Не забивайте себе голову антинаучными идеями! Все, ныне существующие физические законы, никто в ближайшее время не опровергал, их только дополняли и корректировали, что с развитием техники было и всегда будет. Меньше обращайте внимание на малограмотные высказывания людей завлекающих к себе выдуманной сенсацией. Не верьте во всю чепуху, а сначала проводите анализ того, что написано в различных статьях, и что Вам излагают различные средства массовой информации.