Классификация сетевых атак. Виды атак Что такое атаки доступа

Проблема защиты ресурсов информационно-коммуникационных систем и сетей (ИКСМ), становится еще более актуальной в связи с развитием и распространением глобальных вычислительных сетей, территориально распределенных информационных комплексов и систем с удаленным управлением доступом к информационным ресурсам.

Весомым аргументом для повышения внимания к вопросам безопасности ИКСМ является бурное развитие программно-аппаратных методов и средств, способных скрытно существовать в системе и осуществлять потенциально любые несанкционированные действия (процессы), что препятствует нормальной работе пользователя и самой системы и непосредственно наносит вред свойствам информации (конфиденциальности, доступности, целостности).

Несмотря на разработку специальных программно-аппаратных средств защиты от воздействия угроз информационным ресурсам автоматизированных систем, количество новых методов реализации атак постоянно растет. Указанный влияние может быть реализовано технически или организационно, только в том случае, когда известна информация о принципах функционирования ИКСМ, ее структуру, программное обеспечение и т.д.

В настоящее время существует несколько классических определений понятия "атака" (вторжение, нападение) на информационную систему и ее ресурсы. Данный срок может определяться, как процедура вторжения, что приводит к нарушению политики безопасности или действие (процесс), что приводит к нарушению целостности, конфиденциальности и доступности информации системы. Однако, более распространенная трактовка, непосредственно связано с термином «уязвимость», или «возможность реализации угрозы». Под атакой (attack, intrusion) на информационную систему, будем понимать действия (процессы) или последовательность связанных между собой действий нарушителя, которые приводят к реализации угроз информационным ресурсам ИКСМ, путем использования уязвимостей этой информационной системы.

Базовыми причинами нарушения функционирования информационной системы является сбои и отказы в работе информационной системы, которые частично или полностью препятствуют функционированию ИКСМ, возможностям доступа к информационным ресурсам и услугам системы. Кроме того, сбои и отказы в работе является одной из основных причин потери данных.

Существуют различные методы классификации атак. Например, деление на пассивные и активные, внешние и внутренние атаки, умышленные и неумышленные.Однако, в данной статье, приведем более характерные типы атак на информационные системы и проведем их краткое описание реализации и определим характерные признаки.

    Удаленное проникновение (remote penetration). Тип информационных атак, которые позволяют реализовать удаленное управление компьютером пользователя информационных ресурсов системы по сети на базе удаленного доступа. Примером такой программы является NetBus или BackOrifice.

    Локальное проникновение (local penetration). Атака, приводящая к получению несанкционированного доступа к узлу ИКСМ, на котором она запущена. Примером такой программы является GetAdmin.

    Удаленная отказ в обслуживании (remote denial of service). Атаки, которые позволяют нарушить функционирование информационной системы по условиям реализации ее услуг или имеют возможность котрольованного перезагрузки системы путем удаленного доступа.Примером такой атаки является Teardrop или trin00.

    Локальная отказ в обслуживании (local denial of service). Атаки, позволяющие нарушить функционирование системы или перезагрузить систему, на которой они реализуются. В качестве примера такой атаки, можно привести использование несанкционированных апплетов, которые загружают центральный процессор бесконечным циклом, что делает невозможным обработку запросов других приложений.

    Сетевые сканеры (network scanners). Программы, которые анализируют топологию сети и обнаруживают сервисы, доступные для атаки. Примером такой программы можно назвать систему nmap.

    Сканеры уязвимостей (vulnerability scanners). Программы, осуществляющие поиск уязвимостей на узлах сети, могут быть использованы для реализации атак.Примеры: система SATAN или Shadow Security Scanner.

    Взломщики паролей (password crackers). Программы, которые подбирают пароли авторизованных пользователей информационных ресурсов системы и ее услуг.Примером взломщика паролей может служить несанкционированное программное обеспечение: L0phtCrack для Windows или Crack для Unix.

    Анализаторы протоколов (sniffers). Программы, которые "прослушивают" сетевой трафик. С помощью этих программ можно автоматически найти такую ​​информацию, как идентификаторы и пароли пользователей, информацию о кредитных картах и ​​т.д.Анализатором протоколов можно назвать программные продукты: Microsoft Network Monitor, NetXRay компании Network Associates или LanExplorer.

Компания Internet Security Systems, Inc. еще больше сократила число возможных категорий атак на информационную систему, доведя их до минимума.

Я немного рассказал кто такие хакеры, а в этой статье хочу продолжить данную тему и написать о видах хакерских атак и дать рекомендации по их предотвращению.

Атакой (attack) на информационную систему называется действие или последовательность связанных между собой действий нарушителя, которые приводят к реализации угрозы путем использования уязвимостей этой информационной системы. Приступим к изучению атак:

Fishing

Fishing (или Фишинг). Смысл его в том, чтобы получить от пользователей информацию (пароли, номера кредитных карт и т.д.) или деньги. Этот приём направлен не на одного пользователя, а на многих. Например, письма якобы от службы технической поддержки рассылаются всем известным клиентам какого-либо банка.

В письмах обычно содержится просьба выслать пароль к учётной записи, якобы из-за проведения каких-либо технических работ. Подобные письма, обычно очень правдоподобно и грамотно составлены, что, возможно, подкупает доверчивых пользователей.

Рекомендации: Паранойя – лучшая защита. Не доверяйте ничему подозрительному, никому не давайте свои данные. Администраторам не нужно знать Ваш пароль, если он предназначен для доступа к их серверу. Они полностью управляют сервером и могут сами посмотреть пароль или изменить его.

Социальная инженерия

Социальная инженерия – это не технический, а психологический приём. Пользуясь данными, полученными при инвентаризации, взломщик может позвонить какому-либо пользователю (например, корпоративной сети) от имени администратора и попытаться узнать у него, например, пароль.

Это становится возможным, когда в больших сетях, пользователи не знают всех работников, и тем более не всегда могут точно узнать их по телефону. Кроме этого, используются сложные психологические приёмы, поэтому шанс на успех сильно возрастает.

Рекомендации: те же самые. Если действительно есть необходимость, то сообщите нужные данные лично. Если Вы записали пароль на бумаге, не оставляйте её где попало и по возможности уничтожайте, а не просто выбрасывайте в мусорную корзину.

DoS

DoS (Denial of Service или Отказ от Обслуживания). Это не отдельная атака, а результат атаки; используется для вывода системы или отдельных программ из строя. Для этого взломщик особым образом формирует запрос к какой-либо программе, после чего она перестаёт функционировать. Требуется перезагрузка, чтобы вернуть рабочее состояние программы.

Smurf

Smurf (атака, направленная на ошибки реализации протокола). Сейчас этот вид атаки считается экзотикой, однако раньше, когда TCP-IP протокол был достаточно новым, в нём содержалось некоторое количество ошибок, которые позволяли, например, подменять IP адреса.

Однако, этот тип атаки применяется до сих пор. Некоторые специалисты выделяют TCP Smurf, UDP Smurf, ICMP Smurf. Конечно, такое деление основано на типе пакетов.

UDP Storm

UDP Storm (UDP шторм) – используется в том случае, если на жертве открыто как минимум два UDP порта, каждый из которых отсылает отправителю какой-нибудь ответ. Например, порт 37 с сервером time на запрос отправляет текущую дату и время. Взломщик отправляет UDP пакет на один из портов жертвы, но в качестве отправителя указывает адрес жертвы и второй открытый UDP порт жертвы.

Тогда порты начинают бесконечно отвечать друг другу, что снижает производительность. Шторм прекратится, как только один из пакетов пропадёт (например, из-за перегрузки ресурсов).

UDP Bomb

UDP Bomb – взломщик отправляет системе UDP пакет с некорректными полями служебных данных. Данные могут быть нарушены как угодно (например, некорректная длина полей, структура). Это может привести к аварийному завершению. Рекомендации: обновите ПО.

Mail Bombing

Mail Bombing («Почтовая бомбёжка»). Если на атакуемом компьютере есть почтовый сервер, то на него посылается огромное количество почтовых сообщений с целью вывода его из строя.

Кроме того, такие сообщения сохраняются на жёстком диске сервера и могут переполнить его, что может вызвать DoS. Конечно, сейчас эта атака, скорее история, но в некоторых случаях всё же может быть использована. Рекомендации: грамотная настройка почтового сервера.

Sniffing

Sniffing (Сниффинг или прослушивание сети). В том случае, если вместо коммутаторов в сети установлены концентраторы, полученные пакеты рассылаются всем компьютерам в сети, а дальше уже компьютеры определяют для них этот пакет или нет.

Если взломщик получит доступ к компьютеру, который включен в такую сеть, или получит доступ к сети непосредственно, то вся информация, передаваемая в пределах сегмента сети, включая пароли, станет доступна.

Взломщик просто поставит сетевую карту в режим прослушивания и будет принимать все пакеты независимо от того, ему ли они предназначались.

Подробнее можете узнать в статье “ “.

IP Hijack

IP Hijack (IP хайджек). Если есть физический доступ к сети, то взломщик может «врезаться» в сетевой кабель и выступить в качестве посредника при передаче пакетов, тем самым он будет слушать весь трафик между двумя компьютерами. Очень неудобный способ, который часто себя не оправдывает, за исключением случаев, когда никакой другой способ не может быть реализован.

Подобное включение само по себе неудобно, хотя есть устройства, которые немного упрощают эту задачу, в частности они следят за нумерацией пакетов, чтобы избежать сбоя и возможного выявления вторжения в канал.

Dummy DNS Server

Dummy DNS Server (ложный DNS Сервер). Если настройки сети поставлены в автоматический режим, то при включении в сеть, компьютер «спрашивает» кто будет его DNS сервером, к которому он в дальнейшем будет отправлять DNS запросы.

При наличии физического доступа к сети, взломщик может перехватить такой широковещательный запрос и ответить, что его компьютер будет DNS сервером.

После этого он сможет отправлять обманутую жертву по любому маршруту. Например, жертва хочет пройти на сайт банка и перевести деньги, взломщик может отправить её на свой компьютер, где будет сфабрикована форма ввода пароля. После этого пароль будет принадлежать взломщику.

Достаточно сложный способ, потому что взломщику необходимо ответить жертве раньше, чем DNS сервер.

IP-Spoofing

IP-Spoofing (Спуфинг или Подмена IP адреса). Атакующий подменяет свой реальный IP фиктивным. Это необходимо, если доступ к ресурсу имеют только определённые IP адреса. Взломщику нужно изменить свой реальный IP на «привилегированный» или «доверенный», чтобы получить доступ. Этот способ может быть использован по-другому.

После того, как два компьютера установили между собой соединение, проверив пароли, взломщик может вызвать на жертве перегрузку сетевых ресурсов специально сгенерированными пакетами. Тем самым он может перенаправить трафик на себя и таким образом обойти процедуру аутентификации.

Рекомендации: угрозу снизит уменьшение времени ответного пакета с установленными флагами SYN и ACK, а также увеличить максимальное количество SYN-запросов на установление соединения в очереди (tcp_max_backlog). Так же можно использовать SYN-Cookies.

Software vulnerabilities

Software vulnerabilities (Ошибки ПО). Использование ошибок в программном обеспечении. Эффект может быть разный. От получения несущественной информации до получения полного контроля над системой. Атаки через ошибки ПО самые популярные во все времена.

Старые ошибки исправляются новыми версиями, но в новых версиях появляются новые ошибки, которые опять могут быть использованы.

Вирусы

Самая известная простому пользователю проблема. Суть во внедрении вредоносной программы в компьютер пользователя. Последствия могут быть различны и зависят от вида вируса, которым заражён компьютер.

Но в целом – от похищения информации до рассылки спама, организации DDoS атак, а так же получения полного контроля над компьютером. Помимо прикрепленного к письму файла, вирусы могут попасть в компьютер через некоторые уязвимости ОС.

Рекомендации: Пользуйтесь антивирусным программным обеспечением. Не ограничивайтесь только DrWEB или Kaspersky Anti-Virus (потому как они не проверяют реестр), используйте специализированные антивирусы против Malware, например Ad-Aware, SpyBot, XSpy.

Также не открывайте подозрительных вложений и вообще не открывайте программ от неизвестных отправителей. Даже если отправитель Вам знаком, всё равно сначала проверьте антивирусом.

Классификация атак

1. По характеру воздействия

  • пассивное
  • активное

Пассивное воздействие на распределенную вычислительную систему - воздействие, которое не оказывает непосредственного влияния на работу системы, но может нарушать ее политику безопасности.

Пассивное удаленное воздействие практически невозможно обнаружить.

Пример: прослушивание канала связи в сети.

Активное воздействие на распределенную вычислительную систему - воздействие, оказывающее непосредственное влияние на работу системы (изменение конфигурации РВС, нарушение работоспособности и т. д.) и нарушающее принятую в ней политику безопасности.

Практически все типы удаленных атак являются активными воздействиями. Особенностью активного воздействия по сравнению с пассивным является принципиальная возможность его обнаружения, так как в результате его осуществления в системе происходят определенные изменения. В отличие от активного, при пассивном воздействии не остается никаких следов.

2. По цели воздействия

  • нарушение конфиденциальности информации
  • нарушение целостности информации
  • нарушение работоспособности (доступности) системы

При перехвате информации нарушается её конфиденциальность.

Пример: прослушивание канала в сети.

При искажении информации нарушается её целостность.

Пример: внедрение ложного объекта в РВС.

При нарушении работоспособности не происходит несанкционированного доступа, т.е. сохраняется целостность и конфиденциальность информации, однако доступ к ней легальных пользователей также невозможен.

3. По условию начала осуществления воздействия

  • Атака по запросу от атакуемого объекта
  • Атака по наступлению ожидаемого события на атакуемом объекте
  • Безусловная атака

В случае запроса атакующий ожидает передачи от потенциальной цели атаки запроса определенного типа, который и будет условием начала осуществления воздействия.

Пример: DNS- и ARP-запросы в стеке TCP /IP .

В случае наступления события, атакующий осуществляет постоянное наблюдение за состоянием операционной системы удаленной цели атаки и при возникновении определенного события в этой системе начинает воздействие.

Инициатором осуществления начала атаки является атакуемый объект.

Пример: прерывание сеанса работы пользователя с сервером в сетевых ОС без выдачи команды LOGOUT.

В случае безусловной атаки начало её осуществления безусловно по отношению к цели атаки, то есть атака осуществляется немедленно и безотносительно к состоянию системы и атакуемого объекта. Следовательно, в этом случае атакующий является инициатором начала осуществления атаки.

4. По наличию обратной связи с атакуемым объектом

  • с обратной связью
  • без обратной связи(однонаправленная атака)

Атака с обратной связью - атака, во время которой атакующий получает ответ от атакуемого объекта на часть своих действий. Эти ответы нужны, чтобы иметь возможность продолжить атаку и/или осуществлять её более эффективно, реагируя на изменения, происходящие на атакуемой системе.

Атака без обратной связи - атака, происходящая без реакции на поведение атакуемой системы.

Пример: отказ в обслуживании (DoS ).

5. По расположению атакующего относительно атакуемого объекта

  • внутрисегментное
  • межсегментное

Внутрисегментная атака - атака, при которой субъект и объект атаки находятся внутри одного сегмента сети, где сегмент - есть физическое объединение станций с помощью коммуникационных устройств не выше канального уровня.

Межсегментная атака - атака, при которой субъект и объект атаки находятся в разных сегментах сети.

6. По количеству атакующих

  • распределённая
  • нераспределённая

Распределённая атака - атака, производимая двумя или более атакующими на одну и ту же вычислительную систему, объединёнными единым замыслом и во времени.

Нераспределённая атака проводится одним атакующим.

7. По уровню эталонной модели ISO/OSI, на котором осуществляется воздействие

  • физический
  • канальный
  • сетевой
  • транспортный
  • сеансовый
  • представительный
  • прикладной

2. Классификация способов обнаружения и защиты от атак

Классификация средств обеспечения секретности

информации по уровням модели ISO/OSI

в стандарте ISO 7498-2.

Физический уровень.

Средства, предоставляемые на этом уровне,ограничиваются конфиденциальностью для соединений и конфиденциальностью для потока данных, согласно ISO 7498-2.Конфиденциальность на этом уровне обеспечивается обычно с помощью шифрования бит. Эти средства могут быть реализованы как почти прозрачные, то есть без появления дополнительных данных(кроме установления соединения).

Целостность и аутентификация обычно невозможны здесь из-за того, что интерфейс на уровне бит этого уровня не имеет возможностей для передачи дополнительных данных, требуемых при реализации этих средств. Тем не менее, использование соответствующих технологий шифрования на этом уровне может обеспечить предоставление этих средств на более высоких уровнях.

Например, криптографические модели, такие как DES в режиме обратной связи по выходу, не обеспечивают возникновения очень большого числа ошибок при модификации шифрованного текста, поэтому этот режим будет плохим выбором, если нужна не только конфиденциальность. В отличие от этого, режим DES, такой как режим с обратной связью по одному шифрованному биту, обеспечивает требуемые характеристики для ошибок, и может служить подходящей основой для целостности и аутентификации. Средства секретности физического и канального уровня обычно реализуются в виде дополнительной аппаратуры.

Канальный уровень

Согласно ISO 7498-2, средствами, предоставляемыми на канальном уровне, являются конфиденциальность для соединений и конфиденциальность для дейтаграмм.

Средства секретности канального уровня обычно обеспечиваются на основе точка-точка, как и средства физического уровня. И снова, область действия средств должна заканчиваться в местах, где находятся взаимодействующие равноправные сущности, то есть конечные системы и коммутаторы. В среде ЛВС(ГВС) средства секретности также могут предоставляться для широковещательной или групповой передачи, на основе технологий ЛВС, а также канала точка-точка.

Сетевой уровень

Средства секретности сетевого уровня могут предоставляться между конечными системами в сети, независимо от используемых коммутаторов (например коммутаторов пакетов Х.25). ISO 7498-2 отмечает применимость нескольких средств секретности для этого уровня: конфиденциальность для соединений, конфиденциальность для дейтаграмм, конфиденциальность потока данных, целостность (для соединений без восстановления и для дейтаграмм), аутентификацию источника данных и взаимодействующих сущностей, а также управление доступом.

Транспортный уровень

Для транспортного уровня ISO 7498-2 определяет следующие средства секретности: конфиденциальность (для соединений или дейтаграмм), целостность(любая, кроме отдельных полей), аутентификация источника данных и взаимодействующих сущностей, и управление доступом. Существует лишь одно отличие между средствами секретности, предоставляемыми для дейтаграммного взаимодействия на транспортном уровне и средствами, предлагаемыми над сетевым уровнем. Оно заключается в способности обеспечить защиту в промежуточных системах (используя механизмы сетевого уровня), а не только в конечных системах (используя мезанизмы транспортного уровня).

Сеансовый уровень

ISO 7498-2 не позволяет предоставлять средства на сеансовом уровне. Этот уровень мало что дает в смысле средств взаимодействия по сравнению с транспортным или прикладным уровнем. Основываясь на принципе, что не стоит предоставлять средства секретности, не соответствующие базовым средствам взаимодействия на данном уровне, можно возражать против предоставления средств секретности на сеансовом уровне. Кроме того, можно утверждать, что средства секретности лучше предоставлять на транспортном, представительном или прикладном уровнях.

Представительный уровень

Так как этот уровень используется для преобразования данных между обычным и сетевым представлениями, то выгодно шифровать данные на этом уровне, а не на прикладном. Если приложение выполняет шифрование, оно предохраняет представительный уровень от реализации этой функции. Это аргумент против реализации шифрования на прикладном уровне для приложений, которые взаимодействуют напрямую (а не через посредников). Альтернативой этому является дублирование возможностей представительного уровня в приложениях. В стеке TCP/IP, из-за того, что функции представления включены в состав приложений, а не выделены в отдельный уровень, этот конфликт преодолен.

Прикладной уровень

ISO 7498-2 утверждает, что все секретные средства могут быть предоставлены на прикладном уровне, а контроль за участниками взаимодействия может быть предоставлен только на этом уровне. Тем не менее, предоставление некоторых средств на этом уровне вызывает проблемы из-за конфликта с возможностями представительного уровня. Это ограничение обходится для случая приложений с многоэтапной доставкой данных, например средств электронной почты или справочника(спецификации Х.400 и Х.500). Этот конфликт также преодолен в стеке TCP/IP, в котором функции представления обычно включены в приложения.

Фактически, приложения, такие, как средства электронной почты и справочника, могут быть засекречены только с помощью секретности прикладного уровня. Электронная почта требует средств секретности на этом уровне по нескольким причинам.

Во-первых, некоторые средства секретности, используемые в ней, могут быть предоставлены только на этом уровне, например контроль участников. Во-вторых, сообщения обычно адресуются группам получателей (групповая передача на прикладном уровне), и доставка осуществляется за несколько этапов с помощью коммутаторов сообщений. Защита на нижних уровнях часто предоставляется только в реальном времени, для каналов типа точка-точка.

Для электронной почты использование механизмов секретности на более нижних уровнях может обеспечить защиту от отправителя коммутатору сообщений (MTA), защиту между MTA, между MTA и получателями, но только пошаговую. Для обеспечения сквозной секретности, " автор - читатель", требуется использование технологий, специфичных для электронной почты.

Для средств справочника аналогичные проблемы не позволяют средствам секретности нижних уровней адекватно обеспечивать требования секретности. Например, запрос от пользователя к серверу справочника может быть переадресован другим серверам в процессе выдачи ответа. Если сервер справочника, который в конечном счете получает запрос, должен принять решение о предоставлении доступа на основе идентификации отправителя запроса, то это решение не может быть принято на основе информации от протоколов нижних уровней.

Более того, не доверяя серверам, переадресовавшим этот запрос, отвечающий сервер не может быть уверенным в том, что запрос не модифицирован. Поэтому, это приложение, как и электронная почта иллюстрирует основную причину обеспечения секретности на прикладном уровне, то есть неспособность удовлетворить требования секретности только на основе средств нижних уровней.

Классификация способов обнаружения атак.

По технологии обнаружения

· обнаружение аномалий (anomaly detection)

Этот подход сосредотачивается на формировании статистической модели нормального поведения пользователей. Отклонение от модели является признаком нападения. Подход страдает тем, что порождает слишком большое число ложных тревог.

· обнаружение злоупотреблений (misuse detection)

При использовании этого подхода система ищет известные сигнатуры и поднимает тревогу, когда найдет их. Более надежно и выполнимо. Именно на этом подходе основаны практически все предлагаемые сегодня на рынке системы обнаружения атак. Сейчас намечаются сдвиги в развитии первого подхода.

По уровню обнаружения

Обнаружение атак на сетевом уровне

Системы обнаружения атак сетевого уровня используют в качестве источника данных для анализа необработанные (raw) сетевые пакеты. Как правило, системы обнаружения атак (Intrusion Detection Systems, IDS) сетевого уровня используют сетевой адаптер, функционирующий в режиме "прослушивания " (promiscuous), и анализируют трафик в реальном масштабе времени по мере его прохождения через сегмент сети. Модуль распознавания атак использует четыре широко известных метода для распознавания сигнатуры атаки:

· Соответствие трафика шаблону (сигнатуре), выражению или байткоду, характеризующих об атаке или подозрительном действии;

· Контроль частоты событий или превышение пороговой величины;

· Корреляция нескольких событий с низким приоритетом;

· Обнаружение статистических аномалий.

Как только атака обнаружена, модуль реагирования предоставляет широкий набор вариантов уведомления, выдачи сигнала тревоги и реализации контрмер в ответ на атаку. Эти варианты изменяются от системы к системе, но, как правило, включают в себя: уведомление администратора через консоль или по электронной почте, завершение соединения с атакующим узлом и/или запись сессии для последующего анализа и сбора доказательств.

Достоинства систем обнаружения атак на сетевом уровне

IDS сетевого уровня имеют много достоинств, которые отсутствуют в системах обнаружения атак на системном уровне. В действительности, многие покупатели используют систему обнаружения атак сетевого уровня из-за ее низкой стоимости и своевременного реагирования. Ниже представлены основные причины, которые делают систему обнаружение атак на сетевом уровне наиболее важным компонентом эффективной реализации политики безопасности.

1.Низкая стоимость эксплуатации . IDS сетевого уровня необходимо устанавливать в наиболее важных местах сети для контроля трафика, циркулирующего между многочисленных систем. Системы сетевого уровня не требуют, чтобы на каждом хосте устанавливалось программное обеспечение системы обнаружения атак. Поскольку для контроля всей сети число мест, в которых установлены IDS невелико, то стоимость их эксплуатации в сети предприятия ниже, чем стоимость эксплуатации систем обнаружения атак на системном уровне.

2.Обнаружение атак, которые пропускаются на системном уровне . IDS сетевого уровня изучают заголовки сетевых пакетов на наличие подозрительной или враждебной деятельности. IDS системного уровня не работают с заголовками пакетов, следовательно, они не могут определять эти типы атак. Например, многие сетевые атаки типа "отказ в обслуживании" ("denial-of-service") и "фрагментированный пакет" (TearDrop) могут быть идентифицированы только путем анализа заголовков пакетов, по мере того, как они проходят через сеть. Этот тип атак может быть быстро идентифицирован с помощью IDS сетевого уровня, которая просматривает трафик в реальном масштабе времени. IDS сетевого уровня могут исследовать содержание тела данных пакета, отыскивая команды или определенный синтаксис, используемые в конкретных атаках. Например, когда хакер пытается использовать программу Back Orifice на системах, которые пока еще не поражены ею, то этот факт может быть обнаружен путем исследования именно содержания тела данных пакета. Как говорилось выше, системы системного уровня не работают на сетевом уровне, и поэтому не способны распознавать такие атаки.

3.Для хакера более трудно удалить следы своего присутствия . IDS сетевого уровня используют "живой" трафик при обнаружении атак в реальном масштабе времени. Таким образом, хакер не может удалить следы своего присутствия. Анализируемые данные включают не только информацию о методе атаки, но и информацию, которая может помочь при идентификации злоумышленника и доказательстве в суде. Поскольку многие хакеры хорошо знакомы с журналами регистрации, они знают, как манипулировать этими файлами для скрытия следов своей деятельности, снижая эффективность систем системного уровня, которым требуется эта информация для того, чтобы обнаружить атаку.

4.Обнаружение и реагирование в реальном масштабе времени . IDS сетевого уровня обнаруживают подозрительные и враждебные атаки ПО МЕРЕ ТОГО, КАК ОНИ ПРОИСХОДЯТ, и поэтому обеспечивают гораздо более быстрое уведомление и реагирование, чем IDS системного уровня. Например, хакер, инициирующий атаку сетевого уровня типа "отказ в обслуживании" на основе протокола TCP, может быть остановлен IDS сетевого уровня, посылающей установленный флаг Reset в заголовке TCP-пакета для завершения соединения с атакующим узлом, прежде чем атака вызовет разрушения или повреждения атакуемого хоста. IDS системного уровня, как правило, не распознают атаки до момента соответствующей записи в журнал и предпринимают ответные действия уже после того, как была сделана запись. К этому моменту наиболее важные системы или ресурсы уже могут быть скомпрометированы или нарушена работоспособность системы, запускающей IDS системного уровня. Уведомление в реальном масштабе времени позволяет быстро среагировать в соответствии с предварительно определенными параметрами. Диапазон этих реакций изменяется от разрешения проникновения в режиме наблюдения для того, чтобы собрать информацию об атаке и атакующем, до немедленного завершения атаки.

5.Обнаружение неудавшихся атак или подозрительных намерений . IDS сетевого уровня, установленная с наружной стороны межсетевого экрана (МСЭ), может обнаруживать атаки, нацеленные на ресурсы за МСЭ, даже несмотря на то, что МСЭ, возможно, отразит эти попытки. Системы системного уровня не видят отраженных атак, которые не достигают хоста за МСЭ. Эта потерянная информация может быть наиболее важной при оценке и совершенствовании политики безопасности.

6.Независимость от ОС . IDS сетевого уровня не зависят от операционных систем, установленных в корпоративной сети. Системы обнаружения атак на системном уровне требуют конкретных ОС для правильного функционирования и генерации необходимых результатов.

Обнаружение атак на системном уровне

В начале 80-х годов, еще до того, как сети получили свое развитие, наиболее распространенная практика обнаружения атак заключалась в просмотре журналов регистрации на предмет наличия в них событий, свидетельствующих о подозрительной активности. Современные системы обнаружения атак системного уровня остаются мощным инструментом для понимания уже осуществленных атак и определения соответствующих методов для устранения возможностей их будущего применения. Современные IDS системного уровня по-прежнему используют журналы регистрации, но они стали более автоматизированными и включают сложнейшие методы обнаружения, основанные на новейших исследованиях в области математики.

Как правило, IDS системного уровня контролируют систему, события и журналы регистрации событий безопасности (security log или syslog) в сетях, работающих под управлением Windows NT или Unix. Когда какой-либо из этих файлов изменяется, IDS сравнивает новые записи с сигнатурами атак, чтобы проверить, есть ли соответствие. Если такое соответствие найдено, то система посылает администратору сигнал тревоги или приводит в действие другие заданные механизмы реагирования. IDS системного уровня постоянно развиваются, постепенно включая все новые и новые методы обнаружения. Один их таких популярных методов заключается в проверке контрольных сумм ключевых системных и исполняемых файлов через регулярные интервалы времени на предмет несанкционированных изменений. Своевременность реагирования непосредственно связана с частотой опроса. Некоторые продукты прослушивают активные порты и уведомляют администратора, когда кто-то пытается получить к ним доступ.

Достоинства систем обнаружения атак системного уровня

И хотя системы обнаружения атак системного уровня не столь быстры, как их аналоги сетевого уровня, они предлагают преимущества, которых не имеют последние. К этим достоинствам можно отнести более строгий анализ, пристальное внимание к данным о событии на конкретном хосте и более низкая стоимость внедрения.

1.Подтверждают успех или отказ атаки . Поскольку IDS системного уровня используют журналы регистрации, содержащие данные о событиях, которые действительно имели место, то IDS этого класса могут с высокой точностью определять - действительно ли атака была успешной или нет. В этом отношении IDS системного уровня обеспечивают превосходное дополнение к системам обнаружения атак сетевого уровня. Такое объединение обеспечивает раннее предупреждение о начале атаки при помощи сетевого компонента и о ее успешности при помощи системного компонента.

2.Контролирует деятельность конкретного узла . IDS системного уровня контролирует деятельность пользователя, доступ к файлам, изменения прав доступа к файлам, попытки установки новых программ и/или попытки получить доступ к привилегированным сервисам. Например, IDS системного уровня может контролировать всю logon- и logoff-деятельность пользователя, а также действия, выполняемые каждым пользователем при подключении к сети. Для системы сетевого уровня очень трудно обеспечить такой уровень детализации событий. Технология обнаружения атак на системном уровне может также контролировать деятельность, которая обычно ведется только администратором. Операционные системы регистрируют любое событие, при котором добавляются, удаляются или изменяются учетные записи пользователей. IDS системного уровня могут обнаруживать соответствующее изменение сразу, как только оно происходит. IDS системного уровня могут также проводить аудит изменений политики безопасности, которые влияют на то, как системы осуществляют отслеживание в своих журналах регистрации и т.д.

В конечном итоге системы обнаружения атак на системном уровне могут контролировать изменения в ключевых системных файлах или исполняемых файлах. Попытки перезаписать такие файлы или инсталлировать "троянских коней" могут быть обнаружены и пресечены. Системы сетевого уровня иногда упускают такой тип деятельности.

3.Обнаружение атак, которые упускают системы сетевого уровня . IDS системного уровня могут обнаруживать атаки, которые не могут быть обнаружены средствами сетевого уровня. Например, атаки, осуществляемые с самого атакуемого сервера, не могут быть обнаружены системами обнаружения атак сетевого уровня.

4.Хорошо подходит для сетей с шифрованием и коммутацией . Поскольку IDS системного уровня устанавливается на различных хостах сети предприятия, она может преодолеть некоторые из проблем, возникающие при эксплуатации систем сетевого уровня в сетях с коммутацией и шифрованием.

Коммутация позволяет управлять крупномасштабными сетями, как несколькими небольшими сетевыми сегментами. В результате бывает трудно определить наилучшее место для установки IDS сетевого уровня. Иногда могут помочь административные порты (managed ports) и порты отражения (mirror ports, span ports) трафика на коммутаторах, но эти методы не всегда применимы. Обнаружение атак на системном уровне обеспечивает более эффективную работу в коммутируемых сетях, т.к. позволяет разместить IDS только на тех узлах, на которых это необходимо.

Определенные типы шифрования также представляют проблемы для систем обнаружения атак сетевого уровня. В зависимости от того, где осуществляется шифрование (канальное или абонентское), IDS сетевого уровня может остаться "слепой" к определенным атакам. IDS системного уровня не имеют этого ограничения. К тому же ОС, и, следовательно, IDS системного уровня, анализирует расшифрованный входящий трафик.

5.Обнаружение и реагирование почти в реальном масштабе времени . Хотя обнаружение атак на системном уровне не обеспечивает реагирования в действительно реальном масштабе времени, оно, при правильной реализации, может быть осуществлено почти в реальном масштабе. В отличие от устаревших систем, которые проверяют статус и содержания журналов регистрации через заранее определенные интервалы, многие современные IDS системного уровня получают прерывание от ОС, как только появляется новая запись в журнале регистрации. Эта новая запись может быть обработана сразу же, значительно уменьшая время между распознаванием атаки и реагированием на нее. Остается задержка между моментом записи операционной системой события в журнал регистрации и моментом распознавания ее системой обнаружения атак, но во многих случаях злоумышленник может быть обнаружен и остановлен прежде, чем нанесет какой-либо ущерб.

6.Не требуют дополнительных аппаратных средств . Системы обнаружения атак на системном уровне устанавливаются на существующую сетевую инфраструктуру, включая файловые сервера, Web-сервера и другие используемые ресурсы. Такая возможность может сделать IDS системного уровня очень эффективными по стоимости, потому что они не требуют еще одного узла в сети, которому необходимо уделять внимание, осуществлять техническое обслуживание и управлять им.

7.Низкая цена . Несмотря на то, что системы обнаружения атак сетевого уровня обеспечивают анализ трафика всей сети, очень часто они являются достаточно дорогими. Стоимость одной системы обнаружения атак может превышать $10000. С другой стороны, системы обнаружения атак на системном уровне стоят сотни долларов за один агент и могут приобретаться покупателем в случае необходимости контролировать лишь некоторые узлы предприятия, без контроля сетевых атак.

Лекция 33 Виды и типы сетевых атак

Лекция 33

Тема: Виды и типы сетевых атак

Удалённая сетевая атака - информационное разрушающее воздействие на распределённую вычислительную систему, осуществляемое программно по каналам связи.

Введение

Для организации коммуникаций в неоднородной сетевой среде применяются набор протоколов TCP/IP, обеспечивая совместимость между компьютерами разных типов. Данный набор протоколов завоевал популярность благодаря совместимости и предоставлению доступа к ресурсам глобальной сети Интернет и стал стандартом для межсетевого взаимодействия. Однако повсеместное распространение стека протоколов TCP/IP обнажило и его слабые стороны. В особенности из-за этого удалённым атакам подвержены распределённые системы, поскольку их компоненты обычно используют открытые каналы передачи данных, и нарушитель может не только проводить пассивное прослушивание передаваемой информации, но и модифицировать передаваемый трафик.

Трудность выявления проведения удалённой атаки и относительная простота проведения (из-за избыточной функциональности современных систем) выводит этот вид неправомерных действий на первое место по степени опасности и препятствует своевременному реагированию на осуществлённую угрозу, в результате чего у нарушителя увеличиваются шансы успешной реализации атаки.

Классификация атак

По характеру воздействия

Пассивное

Активное

Пассивное воздействие на распределённую вычислительную систему (РВС) представляет собой некоторое воздействие, не оказывающее прямого влияния на работу системы, но в то же время способное нарушить её политику безопасности. Отсутствие прямого влияния на работу РВС приводит именно к тому, что пассивное удалённое воздействие (ПУВ) трудно обнаружить. Возможным примером типового ПУВ в РВС служит прослушивание канала связи в сети.

Активное воздействие на РВС - воздействие, оказывающее прямое влияние на работу самой системы (нарушение работоспособности, изменение конфигурации РВС и т. д.), которое нарушает политику безопасности, принятую в ней. Активными воздействиями являются почти все типы удалённых атак. Связано это с тем, что в саму природу наносящего ущерб воздействия включается активное начало. Явное отличие активного воздействия от пассивного - принципиальная возможность его обнаружения, так как в результате его осуществления в системе происходят некоторые изменения. При пассивном же воздействии, не остается совершенно никаких следов (из-за того, что атакующий просмотрит чужое сообщение в системе, в тот же момент не изменится собственно ничего).

По цели воздействия

Нарушение функционирования системы (доступа к системе)

Нарушение целостности информационных ресурсов (ИР)

Нарушение конфиденциальности ИР

Этот признак, по которому производится классификация, по сути есть прямая проекция трех базовых разновидностей угроз - отказа в обслуживании, раскрытия и нарушения целостности.

Главная цель, которую преследуют практически при любой атаке - получение несанкционированного доступа к информации. Существуют два принципиальных варианта получения информации: искажение и перехват. Вариант перехвата информации означает получение к ней доступа без возможности ее изменения. Перехват информации приводит, следовательно, к нарушению ее конфиденциальности. Прослушивание канала в сети - пример перехвата информации. В этом случае имеется нелегитимный доступ к информации без возможных вариантов ее подмены. Очевидно также, что нарушение конфиденциальности информации относится к пассивным воздействиям.

Возможность подмены информации следует понимать либо как полный контроль над потоком информации между объектами системы, либо возможность передачи различных сообщений от чужого имени. Следовательно, понятно, что подмена информации приводит к нарушению её целостности. Такое информационное разрушающее воздействие есть характерный пример активного воздействия. Примером же удалённой атаки, предназначенной для нарушения целостности информации, может послужить удалённая атака (УА) «Ложный объект РВС».

По наличию обратной связи с атакуемым объектом

С обратной связью

Без обратной связи (однонаправленная атака)

Атакующий отправляет некоторые запросы на атакуемый объект, на которые ожидает получить ответ. Следовательно между атакующим и атакуемым появляется обратная связь, позволяющая первому адекватно реагировать на всяческие изменения на атакуемом объекте. В этом суть удалённой атаки, осуществляемой при наличии обратной связи с атакующим объектом. Подобные атаки наиболее характерны для РВС.

Атаки без обратной связи характерны тем, что им не требуется реагировать на изменения на атакуемом объекте. Такие атаки обычно осуществляются при помощи передачи на атакуемый объект одиночных запросов. Ответы на эти запросы атакующему не нужны. Подобную УА можно назвать также однонаправленной УА. Примером однонаправленных атак является типовая УА «DoS-атака».

По условию начала осуществления воздействия

Удалённое воздействие, также как и любое другое, может начать осуществляться только при определённых условиях. В РВС существуют три вида таких условных атак:

Атака по запросу от атакуемого объекта

Атака по наступлению ожидаемого события на атакуемом объекте

Безусловная атака

Воздействие со стороны атакующего начнётся при условии, что потенциальная цель атаки передаст запрос определённого типа. Такую атаку можно назвать атакой по запросу от атакуемого объекта. Данный тип УА наиболее характерен для РВС. Примером подобных запросов в сети Интернет может служить DNS- и ARP-запросы, а в Novell NetWare - SAP-запрос.

Атака по наступлению ожидаемого события на атакуемом объекте. Атакующий непрерывно наблюдает за состоянием ОС удалённой цели атаки и начинает воздействие при возникновении конкретного события в этой системе. Атакуемый объект сам является инициатором начала атаки. Примером такого события может быть прерывание сеанса работы пользователя с сервером без выдачи команды LOGOUT в Novell NetWare.

Безусловная атака осуществляется немедленно и безотносительно к состоянию операционной системы и атакуемого объекта. Следовательно, атакующий является инициатором начала атаки в данном случае.

При нарушении нормальной работоспособности системы преследуются другие цели и получение атакующим незаконного доступа к данным не предполагается. Его целью является вывод из строя ОС на атакуемом объекте и невозможность доступа для остальных объектов системы к ресурсам этого объекта. Примером атаки такого вида может служить УА «DoS-атака».

По расположению субъекта атаки относительно атакуемого объекта

Внутрисегментное

Таблица 9.1.
Наименование протокола Уровень стека протоколов Наименование (характеристика) уязвимости Содержание нарушения безопасности информации
FTP ( File Transfer Protocol ) – протокол передачи файлов по сети
  • Аутентификация на базе открытого текста (пароли пересылаются в незашифрованном виде)
  • Доступ по умолчанию
  • Наличие двух открытых портов
  • Возможность перехвата данных
telnet – протокол управления удаленным терминалом Прикладной, представительный, сеансовый Аутентификация на базе открытого текста (пароли пересылаются в незашифрованном виде)
  • Возможность перехвата данных учетной записи (имен зарегистрированных пользователей, паролей).
  • Получение удаленного доступа к хостам
UDP – протокол передачи данных без установления соединения Транспортный Отсутствие механизма предотвращения перегрузок буфера
  • Возможность реализации UDР-шторма.
  • В результате обмена пакетами происходит существенное снижение производительности сервера
ARP – протокол преобразования IP-адреса в физический адрес Сетевой Аутентификация на базе открытого текста (информация пересылается в незашифрованном виде) Возможность перехвата трафика пользователя злоумышленником
RIP – протокол маршрутной информации Транспортный Отсутствие аутентификации управляющих сообщений об изменении маршрута Возможность перенаправления трафика через хост злоумышленника
TCP – протокол управления передачей Транспортный Отсутствие механизма проверки корректности заполнения служебных заголовков пакета Существенное снижение скорости обмена и даже полный разрыв произвольных соединений по протоколу TCP
DNS – протокол установления соответствия мнемонических имен и сетевых адресов Прикладной, представительный, сеансовый Отсутствие средств проверки аутентификации полученных данных от источника Фальсификация ответа DNS-сервера
IGMP – протокол передачи сообщений о маршрутизации Сетевой Отсутствие аутентификации сообщений об изменении параметров маршрута Зависание систем Win 9x/NT/2000
SMTP – протокол обеспечения сервиса доставки сообщений по электронной почте Прикладной, представительный, сеансовый Возможность подделывания сообщений электронной почты, а также адреса отправителя сообщения
SNMP – протокол управления маршрутизаторами в сетях Прикладной, представительный, сеансовый Отсутствие поддержки аутентификации заголовков сообщений Возможность переполнения пропускной способности сети

Угрозы, реализуемые по сети, классифицируются по следующим основным признакам:

  1. характер угрозы .

    Пассивная – угроза, которая не оказывает влияния на работу информационной системы, но может нарушить правила доступа к защищаемой информации. Пример: использование sniffer для "прослушивания" сети. Активная – угроза, которая воздействуют на компоненты информационной системы, при реализации которой оказывается непосредственное влияние на работу системы. Пример: DDOS -атака в виде шторма TCP-запросами.

  2. цель реализации угрозы (соответственно, конфиденциальность, доступность, целостность информации).
  3. условие начала атаки :
    • по запросу от атакуемого. То есть злоумышленник ожидает передачи запроса определенного типа, который и будет условием начала НСД.
    • по наступлению ожидаемого события на атакуемом объекте.
    • безусловное воздействие – злоумышленник ничего не ждет, то есть угроза реализуется сразу и безотносительно к состоянию атакуемого объекта.
  4. наличие обратной связи с атакуемым объектом:
    • с обратной связью, то есть на некоторые запросы злоумышленнику необходимо получить ответ. Таким образом, между атакуемым и атакующим есть обратная связь, позволяющая злоумышленнику следить за состоянием атакуемого объекта и адекватно реагировать на его изменения.
    • без обратной связи – соответственно, нет обратной связи и необходимости злоумышленнику реагировать на изменения атакуемого объекта.
  5. расположение нарушителя относительно атакуемой информационной системы : внутрисегментно и межсегментно. Сегмент сети – физическое объединение хостов, технических средств и других компонентов сети, имеющих сетевой адрес. Например, один сегмент образуют компьютеры, подключенные к общей шине на основе Token Ring .
  6. уровень эталонной модели ISO/OSI, на котором реализуется угроза : физический, канальный, сетевой, транспортный, сеансовый, представительный, прикладной.

Рассмотрим наиболее распространенные на настоящее время атаки в сетях на основе стека протоколов TCP/IP.

  1. Анализ сетевого трафика. Данная атака реализуется с помощью специальной программы, называемой sniffer . Sniffer представляет собой прикладную программу, которая использует сетевую карту , работающую в режиме promiscuous mode , так называемый "неразборчивый" режим в котором сетевая плата позволяет принимать все пакеты независимо от того кому они адресованы. В нормальном состоянии на Ethernet-интерфейсе используется фильтрация пакетов канального уровня и если MAC-адрес в заголовке назначения принятого пакета не совпадает с MAC-адресом текущего сетевого интерфейса и не является широковещательным, то пакет отбрасывается. В "неразборчивом" режиме фильтрация на сетевом интерфейсе отключается и все пакеты, включая не предназначенные текущему узлу, пропускаются в систему. Надо заметить, что многие подобные программы используются в легальных целях, например, для диагностики неисправностей или анализа трафика . Тем не менее, в рассмотренной нами выше таблице перечислены протоколы, которые отправляют информацию, в том числе пароли, в открытом виде – FTP, SMTP, POP3 и т.д. Таким образом, с помощью sniffer можно перехватить имя и пароль и осуществить несанкционированный доступ к конфиденциальной информации. Более того, многие пользователи используют одни и те же пароли для доступа ко многим сетевым сервисам. То есть, если в одном месте сети есть слабость в виде слабой аутентификации, пострадать может вся сеть. Злоумышленники хорошо знают людские слабости и широко применяют методы социальной инженерии.

    Защита от данного вида атаки может заключаться в следующем:

    • Сильная аутентификация , например, использование одноразовых паролей (one- time password ). Суть состоит в том, что пароль можно использовать однократно, и даже если злоумышленник перехватил его с помощью sniffer , он не представляет никакой ценности. Конечно, данный механизм защиты спасает только от перехвата паролей, и является бесполезным в случае перехвата другой информации, например, электронной почты.
    • Анти-снифферы – аппаратные или программные средства, способные выявить работу сниффера в сегменте сети. Как правило, они проверяют нагрузку на узлах сети с целью определения "лишней" нагрузки.
    • Коммутируемая инфраструктура. Понятно, что анализ сетевого трафика возможен только внутри одного сегмента сети. Если сеть построена на устройствах, разбивающих ее на множество сегментов (коммутаторы и маршрутизаторы), то атака возможна только в тех участках сети, которые относятся к одному из портов данных устройств. Это не решает проблемы сниффинга, но уменьшает границы, которые может "прослушивать" злоумышленник.
    • Криптографические методы. Самый надежный способ борьбы с работой sniffer . Информация, которая может быть получена с помощью перехвата, является зашифрованной и, соответственно, не имеет никакой пользы. Чаще всего используются IPSec , SSL и SSH .
  2. Сканирование сети .Целью сканирования сети является выявление работающих в сети служб, открытых портов, активных сетевых сервисов , используемых протоколов и т.п., то есть сбор информации о сети. Для сканирования сети чаще всего используются:
    • запросы DNS помогают выяснить злоумышленнику владельца домена, адресную область,
    • эхо-тестирование – выявляет работающие хосты на основе DNS-адресов, полученных ранее;
    • сканирование портов – составляется полный перечень услуг, поддерживаемых этими хостами, открытые порты, приложения и т.п.

    Хорошей и наиболее распространенной контрмерой является использование IDS , которая успешно находит признаки ведения сканирования сети и уведомляет об этом администратора. Полностью избавиться от данной угрозы невозможно, так как если, например, отключить эхо ICMP и эхо-ответ на маршрутизаторе, то можно избавиться от угрозы эхо-тестирования, но при этом потерять данные, необходимые для диагностики сетевых сбоев.

  3. Выявление пароля .Основной целью данной атаки является получение несанкционированного доступа к защищаемым ресурсам путем преодоления парольной защиты. Чтобы получить пароль, злоумышленник может использовать множество способов – простой перебор, перебор по словарю, сниффинг и др. Самым распространенным является простой перебор всех возможных значений пароля. Для защиты от простого перебора необходимо применять сильные пароли, которые не просто подобрать: длина 6-8 символов, использование букв верхнего и нижнего регистра, использование специальных знаков (@,#,$ и т.д.).

    Еще одной проблемой информационной безопасности является то, что большинство людей используют одинаковые пароли ко всем службам, приложениям, сайтам и пр. При этом уязвимость пароля зависит от самого слабого участка его использования.

    Подобного рода атак можно избежать, если использовать одноразовые пароли, о которых мы говорили ранее, или криптографическую аутентификацию.

  4. IP-spoofing или подмена доверенного объекта сети .Под доверенным в данном случае понимается объект сети (компьютер, маршрутизатор, межсетевой экран и т.п.), легально подключенный к серверу. Угрозы заключается в том, что злоумышленник выдает себя за доверенный объект сети. Это можно сделать двумя способами. Во-первых, воспользоваться IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам. Атаки данного типа часто являются отправной точкой для прочих атак.

    Обычно подмена доверенного объекта сети ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между объектами сети. Для двусторонней связи злоумышленник должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес, что тоже является возможным. Для ослабления угрозы (но не ее ликвидации) можно использовать следующее:

    • контроль доступа. Можно настроить контроль доступа на отсечение любого трафика, поступающего из внешней сети с исходным адресом внутри сети. Этот метод является действенным, если санкционированы только внутренние адреса и не работает, если есть санкционированные внешние адреса.
    • Фильтрация RFC 2827 – данный тип фильтрации позволяет пресечь попытки спуфинга чужих сетей пользователями вашей сети. Для этого необходимо отбраковывать любой исходящий трафик, исходный адрес которого не является одним из IP-адресов вашей организации. Часто этот тип фильтрации выполняется провайдером. В результате отбраковывается весь трафик, который не имеет исходного адреса, ожидаемого на определенном интерфейсе. К примеру, если ISP предоставляет соединение с IP-адресом 15.1.1.0/24, он может настроить фильтр таким образом, чтобы с данного интерфейса на маршрутизатор ISP допускался только трафик, поступающий с адреса 15.1.1.0/24. Заметим, что до тех пор, пока все провайдеры не внедрят этот тип фильтрации, его эффективность будет намного ниже возможной.
    • Внедрение дополнительных методов аутентификации. IP-spoofing возможен только в случае аутентификации на основе IP. Если ввести какие–то дополнительные меры по аутентификации, например, криптографические, атака становится бесполезной.
  5. Отказ в обслуживании или Denial of Service (DoS) - атака на вычислительную систему с целью довести её до отказа, то есть создание таких условий, при которых легитимные пользователи системы не могут получить доступ к предоставляемым системой ресурсам, либо этот доступ затруднён.

    DoS-атака является наиболее распространенной и известной атакой в последнее время, что обусловлено в первую очередь простотой реализации. Организация DOS-атаки требует минимум знаний и умений и строится на недостатках сетевого программного обеспечения и сетевых протоколов. Если атака проводится для множества сетевых устройств, говорят о распределенной атаке DoS ( DDoS - distributed DoS).

    Сегодня наиболее часто используются следующие пять разновидностей DoS-атак, для проведения которых существует большое количество программного обеспечения и от которых наиболее тяжело защититься:

    • Smurf - ping-запросы ICMP . При посылке ping-пакета (сообщение ICMP ECHO) по широковещательному адресу (например, 10.255.255.255), он доставляется каждой машине в этой сети. Принцип атаки заключается в посылке пакета ICMP ECHO REQUEST с адресом-источником атакуемого узла. Злоумышленник шлет постоянный поток ping-пакетов по сетевому широковещательному адресу. Все машины, получив запрос, отвечают источнику пакетом ICMP ECHO REPLY. Соответственно, размер ответного потока пакетов возрастает в пропорциональное количеству хостов число раз. В результате, вся сеть подвергается отказу в обслуживании из-за перегрузки.
    • ICMP flood - атака, аналогичная Smurf, только без усиления, создаваемого запросами по направленному широковещательному адресу.
    • UDP flood - отправка на адрес атакуемого узла множества пакетов UDP (User Datagram Protocol).
    • TCP flood - отправка на адрес атакуемого узла множества TCP-пакетов.
    • TCP SYN flood - при проведении такого рода атаки выдается большое количество запросов на инициализацию TCP-соединений с атакуемым узлом, которому, в результате, приходится расходовать все свои ресурсы на то, чтобы отслеживать эти частично открытые соединения.

    Если используется серверное приложение Web-сервер или FTP-сервер, в результате атаки DoS все соединения, доступные для этих приложений, оказываются занятыми, и пользователи не могут получить к ним доступ. Некоторые атаки способны вывести из строя целую сеть, наполнив ее ненужными пакетами. Для противодействия таким атакам необходимо участие провайдера, потому что если он не остановит нежелательный трафик на входе в сеть, атаку не остановить, потому что полоса пропускания будет занята.

    Для реализации DoS-атаки наиболее часто используются следующие программы:

    • Trinoo – представляет собой довольно примитивную программу, которая исторически стала первой для организации DoS-атак единственного типа – UDP-flood. Программы семейства "trinoo" легко обнаруживаются стандартными средствами защиты и не несут угрозы для тех, кто хотя бы чуть-чуть заботиться о своей безопасности.
    • TFN и TFN2K – более серьезное оружие. Позволяют одновременно организовать атаки нескольких типов - Smurf, UDP flood, ICMP flood и TCP SYN flood. Использование этих программ требует от злоумышленника намного более высокой квалификации.
    • Новейшее средство организации DoS-атак - Stacheldracht ("колючая проволока"). Этот пакет позволяет организовывать самые различные типы атак и лавины широковещательных ping-запросов. Кроме того, обмен данными между контроллерами и агентами шифруется, а в само программное обеспечение встроена функция автомодификации. Шифрование сильно затрудняет обнаружение атакующего.

    Для ослабления угрозы можно воспользоваться следующим:

    • Функции анти-спуфинга - правильная конфигурация функций анти-спуфинга на ваших маршрутизаторах и межсетевых экранах поможет снизить риск DoS. Эти функции, как минимум, должны включать фильтрацию RFC 2827. Если хакер не сможет замаскировать свою истинную личность, он вряд ли решится провести атаку.
    • Функции анти-DoS - правильная конфигурация функций анти-DoS на маршрутизаторах и межсетевых экранах может ограничить эффективность атак. Эти функции часто ограничивают число полуоткрытых каналов в любой момент времени.
    • Ограничение объема трафика (traffic rate limiting) - организация может попросить провайдера (ISP) ограничить объем трафика. Этот тип фильтрации позволяет ограничить объем некритического трафика, проходящего по вашей сети. Обычным примером является ограничение объемов трафика ICMP , который используется только для диагностических целей. Атаки DoS часто используют ICMP .

    Можно выделить несколько разновидностей угроз данного типа:

    • Скрытый отказ в обслуживании, когда часть ресурсов сети задействован на обработку пакетов, передаваемых злоумышленником со снижением пропускной способности канала, нарушением времени обработки запросов, нарушением производительности сетевых устройств. Пример: направленный шторм эхо-запросов по протоколу ICMP или шторм запросов на установление TCP-соединения.
    • Явный отказ в обслуживании, вызванный тем, что ресурсы сети исчерпались в результате обработки пакетов, посланных злоумышленниками. При этом легальные запросы пользователей не могут быть обработаны из-за того, что вся полоса пропускания канала занята, переполнены буферы, переполнение дискового пространства и т.д. Пример: направленный шторм(SYN-flooding).
    • Явный отказ в обслуживании, вызванный нарушением логической связности между техническими средствами сети при передаче злоумышленником управляющих сообщений от имени сетевых устройств. При этом изменяются маршрутно-адресные данные. Пример: ICMP Redirect Host или DNS-flood.
    • Явный отказ в обслуживании, вызванный тем, что злоумышленник передает пакеты с нестандартными атрибутами (например, UDP-bomb) или имеющих длину, превышающую максимальную (Ping Death).

    Атаки DoS нацелены на нарушение доступности информации и не нарушают целостность и конфиденциальность.

  6. Атаки на уровне приложений. Атака данного типа заключается в использовании "брешей" в серверном программном обеспечении (HTML, sendmail, FTP). Используя эти уязвимости, злоумышленник получает доступ к компьютеру от имени пользователя приложения. Для атак на уровне приложений часто используются порты, которые могут "проходить" через межсетевой экран.

    Главная проблема с атаками на уровне приложений состоит в том, что они часто пользуются портами, которым разрешен проход через межсетевой экран. К примеру, хакер, нападающий на Web-сервер, может использовать ТСР порт 80. Чтобы Web-сервер мог предоставлять пользователям страницы, порт 80 на межсетевом экране должен быть открыт. С точки зрения межсетевого экрана, атака рассматривается как стандартный трафик для порта 80.

    Полностью исключить атаки на уровне приложений невозможно, так как прикладные программы с новыми уязвимостями возникают регулярно. Самое главное здесь - хорошее системное администрирование. Вот некоторые меры, которые можно предпринять, чтобы снизить уязвимость для атак этого типа:

    • чтение логов (системных и сетевых);
    • отслеживание уязвимостей в новом программном обеспечении с помощью специализированных сайтов, например, http://www.cert.com .
    • использование IDS .

Из самой природы сетевой атаки понятно, что ее появление не контролируется каждым конкретным узлом сети. Мы рассмотрели далеко не все атаки, возможные в сети, – на практике их значительно больше. Тем не менее, защититься от всех типов атак не видится возможным. Наиболее оптимальным подходом к защите периметра сети является устранение уязвимостей, которые используются в большинстве атак злоумышленников. Списки таких уязвимостей публикуются на многих сайтах, занимающихся сбором подобной статистики, например, сайт института SANS: http://www.sans.org/top-cyber-security-risks/?ref=top20 . Рядовой злоумышленник не ищет каких-то оригинальных способов для атаки, а сканирует сеть в поиске известной уязвимости и использует ее.